Hydrocotylosides I–VII, New Oleanane Saponins from *Hydrocotyle sibthorpioides*

Aki Matsushita,[†] Yukimi Sasaki,[†] Tsutomu Warashina,[†] Toshio Miyase,^{*,†} Hiroshi Noguchi,[†] and David Vander Velde[‡]

School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan, and Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045

Received August 7, 2003

Seven new oleanane-type triterpenoid saponins, hydrocotylosides I-VII (1–7), and one known saponin, udosaponin B (8), were isolated from the methanol extract of the whole plants of *Hydrocotyle sibthorpioides*. The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence.

Hydrocotyle sibthorpioides Lam. belongs to the Apiaceae. In this family, saponins are rare and have been reported only from members of the genera *Bupleurum*,¹ *Centella*,² *Hydrocotyle*, and *Sanicula*.^{3,4} Previous investigations have led to the isolation of seven oleanane glycosides, ranuncosides I–VII, from *H. ranunculoides*.^{5,6} *H. sibthorpioides* is known to have astringent, antifebrile, and diuretic activities;⁷ however, no study of its chemical constituents has been performed. As a part of a research program on saponins in *Hydrocotyle* species, we have isolated seven new oleanane-type triterpenoid saponins named hydrocotylosides I–VII (**1**–**7**) and the previously known udosaponin B (**8**) from the whole plant of *H. sibthorpioides*.

Results and Discussion

A methanol extract of the whole plants of *H. sibthorpioides* was dissolved in water and extracted with diethyl ether. The water layer was passed through a porous polymer gel Diaion HP-20 column, and the methanol eluate was separated by preparative HPLC to afford saponins (1-7)and udosaponin B (8).

The FABMS of hydrocotyloside I (1) exhibited a quasimolecular ion peak at m/2965 [M + Na]⁺, and the ¹³C NMR spectrum revealed 47 carbon signals, indicating the molecular formula C47H74O19. The ¹H NMR spectrum of 1 showed signals of an olean-12-ene-type aglycon [seven singlet methyl signals at δ 0.89, 1.03, 1.08, 1.14, 1.29 (CH₃-23 and CH₃-30, overlapped), and 1.80 and a trisubstituted olefinic proton signal at δ 5.50 (dd, J = 3, 3 Hz)], two anomeric proton signals [δ 5.01 (d, J = 7.5 Hz) and 5.40 (d. J = 7.5 Hz)], a methyl signal at δ 1.82 (s) of an acetyl moiety, and a triplet methyl signal at δ 1.18 (t, J = 8 Hz). Also, a quartet methylene signal at δ 2.43 (q, J = 8 Hz), which showed a HMBC correlation with a carbonyl carbon (δ 174.3), indicated the presence of a propanoyl moiety in the molecule. The ester groups were also identified by alkaline hydrolysis. The structure of the aglycon was determined by ¹H, ¹³C NMR, HMQC, and HMBC experiments as 3,21,22-trisubstituted olean-12-en-3,15,16,21,22,-28-hexaol. The hydroxyl groups at C-15 (δ 67.5) and C-16 (δ 72.7) were assigned with 15 α ,16 α -orientation by comparison with ¹³C NMR data in the literature.^{5,8} The coupling constants (10 Hz) between H-21 and H-22 indicated diaxial orientations. The sugar moieties of **1** were

	R ₁	R ₂	R ₃
1	propanoyl	ОН	-GlcA — Glc
2 2-n	nethylpropanoyl	ОН	-GlcA ² Glc
3 2-n	nethylpropanoyl	ОН	-GlcA
4 2-n	nethylpropanoyl	ОН	-GlcA ² Glc ² Glc
5 2-n	nethylpropanoyl	ОН	Ara 6 -Gic
6 2-n	nethylbutanoyl	ОН	Ara ⁶ -Glc ² Glc 4 Glc
7	acetyl	н	Ara 6 -Gic <u>-</u> Gic 4 Gic
propar	oyl Y		
2-meth	nylpropanoyl		
2-meth	ylbutanoyl 🥆		/

characterized as a β -D-glucuronopyranosyl unit and a β -D-glucopyranosyl unit from the difference HOHAHA spec-

10.1021/np030356z CCC: \$27.50 © 2004 American Chemical Society and American Society of Pharmacognosy Published on Web 02/10/2004

^{*} To whom correspondence should be addressed. Tel/Fax: +81-54-264-5661. E-mail: miyase@ys7.u-shizuoka-ken.ac.jp.

[†] University of Shizuoka.

[‡] University of Kansas.

trum and GC analysis.¹¹ The sugar units were assigned the β -configuration according to the anomeric proton coupling constants of each monosaccharide. The positions of the sugar moieties were identified from the HMBC and ROE NMR spectra (see Supporting Information). On the basis of these studies, the structure of hydrocotyloside I (1) was deduced as 3-*O*- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl-22-*O*-acetyl-21-*O*-propanoyl-3 β ,15 β ,16 α ,21 β ,22 α ,-28-hexahydroxyolean-12-ene.

The FABMS of hydrocotyloside II (2) gave a quasimolecular ion peak at m/z 979 [M + Na]⁺ in accordance with the molecular formula, $C_{48}H_{76}O_{19}$. The ¹H NMR spectrum showed an acetyl moiety signal, two anomeric protons [δ 5.01 (d, J = 7.5 Hz) and 5.39 (d, J = 8 Hz)], two doublet methyl signals [δ 1.23 (d, J = 7 Hz) and 1.24 (dd, J = 7, 2 Hz)], and a methine signal at δ 2.67 (sept, J = 7Hz) attributed to a 2-methylpropanoyl group. On comparison of the ¹H and ¹³C NMR data of the sugar moieties with those of **1**, these were found to be the same as in **1**. Accordingly, hydrocotyloside II (**2**) was identified as 3-*O*- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl-22-*O*acetyl-21-*O*-(2-methylpropanoyl)-3 β , 15 α , 16 α , 21 β , 22 α , 28hexahydroxyolean-12-ene.

Hydrocotyloside III (3) was assigned a molecular formula of C₅₄H₈₆O₂₄, as determined from the FABMS data, which gave a quasi-molecular ion peak at $m/z 1142 [M + Na]^+$. The ¹H NMR spectrum showed the presence of an acetyl group and a 2-methylpropanoyl group and three anomeric protons [δ 4.97 (d, J = 7.5 Hz), 5.40 (d, J = 8 Hz), and 5.72 (d, J = 8 Hz)]. The HMBC spectrum indicated that the positions of the 2-methylpropanoyl group and the acetyl group were identical to those of 2. The saccharide unit structure and linkage were determined as $[\beta$ -D-glucopyranosyl- $(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucuronopyranose by HMBC and ROE correlations (see Supporting Information) and by acid hydrolysis. Thus, the structure of hydrocotyloside III (3) was assigned as $3-O-[\beta-D-glucopy$ ranosyl- $(1\rightarrow 3)$]- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucuronopyranosyl-22-O-acetyl-21-O-(2-methylpropanoyl)- 3β , 15α , 16α , - 21β , 22α , 28-hexahydroxyolean-12-ene.

The FABMS of hydrocotyloside IV (4) exhibited a quasimolecular ion peak at $m/z \, 1142 \, [M + Na]^+$, consistent with the molecular formula, $C_{54}H_{86}O_{24}$. The NMR spectra of the aglycon were similar to those of **2** and **3**. The ¹³C NMR data showed the low-field shifts of C-2 of a glucuronopyranosyl unit and C-2 of a glucopyranosyl unit. These data led to the assignment of hydrocotyloside IV (4) as $3 - O - \beta - D$ glucopyranosyl- $(1 \rightarrow 2) - \beta$ -D-glucopyranosyl- $(1 \rightarrow 2) - \beta$ -D-glucuronopyranosyl- $(2 - \alpha - \alpha + 1) - O - (2 - methylpropanoyl) - 3\beta$, 15α , 16α , 21β , 22α , 28-hexahydroxyolean-12-ene.

The FABMS data of hydrocotyloside V (5) afforded a quasi-molecular ion peak at m/z 1260 [M + Na]⁺, which indicated a molecular formula of C₅₉H₉₆O₂₇. The ¹H NMR spectrum of 5 revealed signals for a 2-methylpropanoyl group, an acetyl group, and four anomeric protons [δ 4.71 (d, J = 8 Hz), 5.04 (d, J = 7.5 Hz), 5.28 (d, J = 7.5 Hz), and 5.44 (d, J = 8 Hz)]. On the basis of the difference HOHAHA spectrum and acid hydrolysis, the sugar moieties of **5** were determined to consist of three β -D-glucopyranosyl units and an α -L-arabinopyranosyl unit. The structures of the sugar moieties were deduced by ¹³C NMR data and HMBC and ROE spectra (see Supporting Information). The glucopyranosyl unit at C-3 of the aglycon showed low-field shifts of its carbon resonances [C-2 (δ 81.0), C-3 (δ 80.5), and C-6 (δ 68.5)] due to glycosylation. On the basis of these results, the structure of hydrocotyloside V (5) was assigned as 3-*O*- $[\alpha$ -L-arabinopyranosyl- $(1\rightarrow 6)$]- $[\beta$ -D-glucopyranosyl $(1\rightarrow 4)$]- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl-22-O-acetyl-21-O-(2-methylpropanoyl)- 3β ,15 α ,16 α ,21 β ,22 α ,28-hexahydroxyolean-12-ene.

The FABMS data for hydrocotyloside VI (6) showed a quasi-molecular ion peak at $m/z 1274 [M + Na]^+$, consistent with the molecular formula, $C_{60}H_{98}O_{27}$. On acid hydrolysis, the sugar components, D-glucose and L-arabinose, were detected. The ¹H NMR spectrum showed four anomeric protons [δ 4.71 (d, J = 8 Hz), 5.05 (d, J = 7.5 Hz), 5.28 (d, J = 7.5 Hz), and 5.45 (d, J = 8 Hz)]. The sugar moieties were the same as in 5, but the ester moieties differed. The ¹H NMR showed a triplet methyl signal at δ 0.95 (t, J =7.5 Hz), a methylene signal at δ 1.51 (overlapped), a methine signal at δ 2.51 (m), a doublet methyl signal at δ 1.23 (d, J = 7 Hz), and an acetyl group signal at δ 1.81 (s). These data agreed with the signals of a 2-methylbutanoyl moiety, which was identified also by alkaline hydrolysis. Hence, the structure of hydrocotyloside VI (6) was concluded to be 3-O- α -[L-arabinopyranosyl-(1 \rightarrow 6)]-[β -D-glucopyranosyl- $(1\rightarrow 4)$]- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl-22-*O*-acetyl-21-*O*-(2-methylbutanoyl)- 3β , 15α , 16α , 21β , -22α,28-hexahydroxyolean-12-ene.

Hydrocotyloside XI (7) was assigned the molecular formula C₅₇H₉₂O₂₆, as determined from the quasi-molecular ion peak at m/z 1216 [M + Na]⁺ in its FABMS. The NMR data showed that the aglycon of 7 was somewhat different from compounds 1-6. The ¹H NMR spectrum showed signals for an olean-12-ene-type aglycon, four anomeric protons, two methyl singlets of acetyl groups (δ 1.99 and 2.13), and methylene protons at δ 1.61 (br d, J = 14 Hz) and 1.87 (dd, J = 14, 4 Hz). The HMQC spectrum was used to assign the methylene signals to C-15 of the aglycon (δ 34.7). Further supporting evidence was obtained from the long-range HMBC correlations between the proton at δ 1.61 and C-13 (δ 142.9) and C-17 (δ 48.1), between the proton at δ 1.87 and C-13, and between H-27 (δ 1.81) and C-15. Thus, the structure of the aglycon was determined as a 3,21,22-trisubstituted olean-12-en-3,16,21,22,28-pentaol. The positions of the two acetyl groups were deduced at H-21 and H-22, respectively, from the HMBC experiment (see Supporting Information). The ¹H and ¹³C NMR data were identical to those of 5 and 6, so the sugar moieties of 7 are the same in all these compounds. Therefore, the structure of hydrocotyloside VII (7) was concluded to be 3-O- $[\alpha-L-arabinopyranosyl-(1\rightarrow 6)]-[\beta-D-glucopyranosyl-(1\rightarrow 4)] \beta$ -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-21-*O*-acetyl-22-O-acetyl- 3β , 16 α , 21 β , 22 α , 28-pentahydroxyolean-12-

The known compound **8** was identified as udosaponin B or $3 - O - [\beta - D - galactopyranosyl-(1 \rightarrow 2) - \beta - D - glucuronopyranosyl]-28 - O - \beta - D - glucopyranosylolean - 12 - en - 28 - oic acid (isolated from$ *Steganotaenia araliacea*Hochst⁹ and as the methyl ester from*Aralia cordata*Thumb.¹⁰), from ¹H, ¹³C, HMQC, and HMBC NMR experiments.

Experimental Section

General Experimental Procedures. Optical rotations were taken on a JASCO DIP 1000 digital polarimeter. NMR spectra were recorded in C_5D_5N on a JEOL α -400 instrument at 400 MHz for ¹H and 100 MHz for ¹³C NMR at 35 °C. FABMS and HRFABMS data were obtained on a JEOL JMS 700 mass spectrometer. Preparative HPLC was performed on a JASCO system 800 instrument. GC was performed on a Hitachi G-3000 instrument.

Plant Material. The plant was collected in Shizuoka, Japan, in April 2002 and identified by Prof. Akira Ueno, School of Pharmaceutical Sciences, University of Shizuoka. A voucher specimen is deposited at the herbarium of the University of Shizuoka, No. 20021015.

Table 1.	¹ H NMR	Data	(δ) of	Compounds	1 - 7	in Pyridin	e-d
----------	--------------------	------	---------------	-----------	-------	------------	-----

position		1	2		<u></u>	3	4		5		6	7		
aglycon	3 3.34 (dd. 11.5. 4) 3		5, 4) 3,34 (dd	1.5.4)	3.33 (dd	. 11.5. 4)	3.36 (dd. 1	1.5.4)	3.18 (dd. 11.5	5. 4)	3.18 (dd. 12. 4)	3.18 (dd. 12. 4)		
	5	0.83 (br d, 12	2.5) 0.82 (br d	, 12)	0.83 ^a	, 11.5, 1)	0.84 (br d,	12)	0.77 (br d, 11	.5)	0.78 (br d, 12)	0.72 (br d, 11.5)		
	12	5.50 (dd, 3, 3)	(dd, 3, 3) 5.50 (dd, 3, 3) 5.50 (dd, 3,3) 5.50 (5.50 (dd, 3	3, 3)	5.51 (dd, 3, 3)		5.52 ^a	5.41 (dd, 3, 3)				
	15	4.18 (d, 4.5)	4.18 (d,4)		4.18 ^a		4.18 ^a		4.18 ^a		4.19 ^a	1.61 (br d, 14)		
	15	4.39 ^a	4 31 <i>ª</i>		4 38 ^a		4.38 ^a		4.38 ^a		4 39 ^a	1.67 (dd, 14, 4) 4 45 ^a		
	18	3.03 (br d, 11) 3.01 ^a		3.02 (br	d, 11)	3.03 (br d,	11)	3.10 ^a		3.02 ^a	3.07 (br d, 11)		
	21	6.48 (d, 10)	6.46 (d, 10).5)	6.46 (d,	10)	6.46 (d, 10).5)	6.46 (d, 10.5)		6.48 (d, 10)	6.49 (d, 10)		
	22	6.16 (d, 10)	6.16 (d, 10).5)	6.16 (d,	10)	6.16 (d, 10).5)	6.16 (d, 10.5)		6.17 (d, 10)	6.18 (d, 10)		
	23	1.29(s) 1 14(s)	1.28 (S) 1.13 (s)		1.26 (S)		1.30 (s) 1.15 (s)		1.20 (s)		1.21 (S) 1.09 (s)	1.23 (S) 1.10 (s)		
	25	0.89 (s)	0.89 (s)		0.85 (s)		0.87 (s)		0.89 (s)		0.89 (s)	0.86 (s)		
	26	1.03 (s)	1.03 (s)		1.02 (s)		1.03 (s)		1.03 (s)		1.03 (s)	0.88 (s)		
	27	1.80 (s)	1.82 (s)		1.83 (s)	10.5)	1.82 (s)	N	1.80 (s)		1.80 (s)	1.81 (s)		
	28	3.45 (d, 11) 3.70 (d, 11)	3.45 (d, 1) 3.70 (d, 1)	L) L)	3.44 (d, 3.69 (d	10.5)	3.45 (d, 11 3.70 (d, 11	L)	3.45 (d, 11) 3.70 (d, 11)		3.45 (d, 11) 3 70 (d, 11)	3.39 (d, 11) 3.63 (d, 11)		
	29	1.08 (s)	1.07 (s)	.)	1.07 (s)	10.5)	1.07 (s)	.)	1.08 (s)		1.10 (s)	1.08 (s)		
	30	1.29 (s)	1.28 (s)		1.28 (s)		1.29 (s)		1.30 (s)		1.30 (s)			
ester moiety												0.10()		
acetyl at C-21		1.92 (a)	1.99 (a)		1.09 (a)		1.92 (a)		1.99 (a)		1.99 (a)	2.13 (s)		
propanovl	2	2.43 (a. 8)	1.02 (5)		1.02 (8)		1.02 (8)		1.02 (5)		1.02 (5)	1.99 (8)		
F- of model	3	1.18 (t, 8)												
2-methyl-	2		2.67 (sept	, 7)	2.67 (se	pt, 7)	2.68 (sept	, 7)	2.68 (sept, 7)					
propanoyl	3		1.23 (d, 7)	79)	1.23 (d,	7) 7)	1.24 (d, 7)		1.24 (d, 7)					
2-methyl-	2		1.24 (uu,	(, 2)	1.24 (u,	()	1.23 (u, 7)		1.23 (u, 7)		2.51 (m)			
butanoyl	3									1.51 ^a				
	4										0.95 (t, 7.5)			
	5										1.23 (d, 7)			
position		1	2		3		4		5		6	7		
sugar moiety	G	IcA	GIcA	GIcA		GIcA	0	Glc^d		Glc^d		Glc ^d		
1	5	.01 (d, 7.5)	5.01 (d, 7.5)	4.97	(d, 7.5)	5.08 (d, 4.20a)	8)	4.71 ((d, 7.5)	4.71	(d, 8)	4.72 (d, 7.5)		
3	4	.39 ^a	4.38 ^a	4.36	9	4.62 ^a		4.14 ^a		4.17	3	4.18 (dd. 10, 10)		
4	4	.56 ^a	4.55 ^a	4.51	51 ^a 4.54 ^a		4.32^{a}		a 4.3		3	4.36 ^a		
5	4	.61 ^a	4.60 ^a	4.54	54 ^a 4.66 ^a		3.84 ^a		a 3.8			3.87 ^a		
6								4.57 ((dd, 11, 3.5) (d 10)	4.59	(aa, 11, 4) (br.d. 10, 5)	4.60 (dd, 11, 3.5) 4.77 (br.d. 11)		
0	G	lc	Glc	Glc ^c		Glc ^b		Glc ^e	(u, 10)	Glc ^e	(bi u, 10.5)	Glc ^e		
1	5	.40 (d, 7.5)	5.39 (d, 8)	5.72	(d, 8)	5.55 (d,	8)	5.28 ((d, 7.5)	5.28	(d, 7.5)	5.29 (d, 7.5)		
2	4	.12 ^a	4.11 (dd,9, 8)	4.08	9	4.18 ^a		4.01 ^a		4.00	3	4.01 ^a		
3	4.24^{a} 4.24 (dd, 9, 9) 4.27		4.27	7^a 4.30^a		4.20 ^a) ^a 4.		2	4.20° 4.20°			
5	3	4.32^{-} 4.32^{-} 4.13^{-} 3.93^{a} 3.92^{a} 3.89		(m)	3.86 (m)	3.87 ^a	7^{a} 3.8		3	3.88 ^a			
6	4	.46 ^a	4.44 ^a	4.36	^a 4.36 ^a		4.40		40 ^a		3	4.39 ^a		
6	4	.46 ^a	4.490	4.48	3	4.47 (dd	l, 11.5, 3)	4.48 ^a		4.48	3	4.49 (dd, 11, 3)		
1				GIC ² 5.40	(d 8)	termina 5 36 (d	al GIC	GIC ⁴ 5.44.0	(d 8)	GCI ⁴ 5.45	(d 8)	GIC^{1} 5 45 (d. 8)		
2				4.03	(u , b)	4.08 ^a	0)	4.02 ^a	(u, 0)	4.024	(u, o)	4.02 ^a		
3				4.21		4.20 ^a		4.22^{a}		4.344	3	4.35 ^a		
4				4.14	a ()	4.11 ^a		4.35 ^a		4.23	a -	4.22 (dd, 10, 10)		
5				4.03	(m)	3.98 ^a 4 30a		4.13 ^a		4.12	1	4.12 (m) 4.25 ^a		
6				4.46	а	4.50 ^a		4.40 ^a		4.41	3	4.40 ^a		
-								Ara		Ara		Ara		
1								5.04 ((d, 7.5)	5.05	(d, 7.5)	5.05 (d, 7)		
2								4.45 ^a		4.45	2	4.45 ^a 4.05 ^a		
3 4								4.23 ^a		4.23	3	4.23 ^a		
5								3.72 ((br d, 11)	3.71	(br d, 11)	3.73 (br d, 11)		
~								4.25^{a}		4.25	3	4.25 ^a		

^a Overlapped with other signals. ^b Glc at C-2 of GIcA. ^c Glc at C-3 of GIcA. ^d Glc at C-3 of aglycon. ^e Glc at C-2 of Glc. ^f Glc at C-4 of Glc.

Extraction and Isolation. Dried whole plants of *Hydrocotyle sibthorpioides* (764 g) were extracted with MeOH. The MeOH extract was concentrated under reduced pressure to give 85 g of residue, which was dissolved in water and then extracted with ether. The water layer was applied to a Mitsubishi Diaion HP-20 column (7 × 35 cm), and the adsorbed material was eluted with 50% MeOH (3.5 L), 60% MeOH (3.5 L), 70% MeOH (5 L), and MeOH (5 L) after washing with water to give 50% MeOH (6.8 g), 60% MeOH (1.8 g), 70% MeOH (2.0 g), and MeOH eluates (2.5 g). The 70% MeOH eluate (2.0 g) was subjected to HPLC (column, ODS, 5 × 100 cm; solvent, CH₃CN-H₂O (25:75→45:55) linear gradient; flow rate, 45 mL/min; detection, UV 205 nm) to afford 17 fractions.

Fraction 11 (148 mg) was separated by preparative HPLC [Capcell Pak Ph, 20 mm \times 25 cm, CH₃CN–H₂O–TFA (27.5: 72.5:0.05), 6.5 mL/min, UV 205 nm] to give **2** ($t_{\rm R}$ 67.8 min, 7.5 mg), **7** ($t_{\rm R}$ 34.0 min, 55.3 mg), and **8** ($t_{\rm R}$ 54.0 min, 28.6 mg).

Fraction 12 (134 mg) was subjected to preparative HPLC [Capcell Pak Ph, 20 mm \times 25 cm, CH₃CN-H₂O-TFA (30:70: 0.05), 6.5 mL/min, UV 205 nm] to give **1** ($t_{\rm R}$ 42.2 min, 3.9 mg), **2** ($t_{\rm R}$ 65.0 min, 17.4 mg), **3** ($t_{\rm R}$ 59.1 min, 8.6 mg), and **4** ($t_{\rm R}$ 50.0 min, 14.8 mg).

Fraction 13 (90 mg) was purified by preparative HPLC [Capcell Pak Ph, 20 mm \times 25 cm, CH₃CN-H₂O-TFA (32.5: 67.5:0.05), 6.5 mL/min, UV 205 nm] to give **2** ($t_{\rm R}$ 54.0 min, 18.8 mg) and **5** ($t_{\rm R}$ 27.5 min, 34.9 mg).

position 1 2 3 4 5 6 7 position 1 2 3 4 5 6 7 aglyon 1 3.1 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>								-										
aglyon 1 39.1 39.1 39.0 39.1 39.0	position		1	2	3	4	5	6	7	position		1	2	3	4	5	6	7
2 2 2 2 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 19.3	aglycon	1	39.1	39.1	39.0	39.1	39.1	39.0	38.9	2-methyl-	1			76.9	176.8	176.8	176.8	
3 89.2 89.2 89.5 89.4 89.5 89.4 89.6 4 19.3 1		2	26.7	26.7	26.7	26.7	26.7	26.7	26.7	propanoyl	2			34.9	34.9	34.9	34.9	
4 39.6 39.6 39.6 39.6 9.7 19.5 19.		3	89.2	89.2	89.5	89.2	89.5	89.4	89.5		3			19.3	19.3	19.3	19.3	
5 55.6 55.7 55.6 55.7 55.9 55.8 55.7 55.9 6 18.8 18.8 18.9 <td></td> <td>4</td> <td>39.6</td> <td>39.6</td> <td>39.6</td> <td>39.6</td> <td>39.5</td> <td>39.4</td> <td>39.6</td> <td></td> <td>4</td> <td></td> <td></td> <td>19.5</td> <td>19.5</td> <td>19.5</td> <td>19.5</td> <td></td>		4	39.6	39.6	39.6	39.6	39.5	39.4	39.6		4			19.5	19.5	19.5	19.5	
6 18.8 18.8 18.9 <t< td=""><td></td><td>5</td><td>55.6</td><td>55.7</td><td>55.6</td><td>55.9</td><td>55.8</td><td>55.7</td><td>55.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		5	55.6	55.7	55.6	55.9	55.8	55.7	55.9									
7 36.7 <t< td=""><td></td><td>6</td><td>18.8</td><td>18.8</td><td>18.9</td><td>18.9</td><td>18.9</td><td>18.8</td><td>18.5</td><td>2-methyl-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>176.5</td></t<>		6	18.8	18.8	18.9	18.9	18.9	18.8	18.5	2-methyl-	1							176.5
8 41.5 41.5 41.5 41.5 41.5 41.4 40.1 3 27.2 27.2 4		7	36.7	36.7	36.7	36.7	36.7	36.7	33.2	butanoyl	2							42.0
9 47.2 47.2 47.2 47.3 47.2 47.0 4 12.1 1		8	41.5	41.5	41.5	41.5	41.5	41.4	40.1		3							27.2
10 37.0 <		9	47.2	47.2	'47.2	47.2	47.3	47.2	47.0		4							12.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10	37.0	37.0	37.0	37.0	37.0	36.9	36.8		5							17.2
12 125.4 125.4 125.4 125.4 125.4 125.4 125.4 125.4 125.4 125.4 126.4 114.0 105.4 10		11	24.0	24.0	24.0	24.0	24.1	24.0	23.9									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	125.4	125.4	125.4	125.4	125.5	125.4	124.0	sugar moiety		GIcA	GIcA	GIcA	GIcA	Glc^c	Glc^c	Glc^c
14 47.8 47.8 47.9 47.8 47.8 47.8 47.8 47.8 47.8 47.8 47.8 47.8 47.8 47.8 47.8 47.8 72 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.6 68.1 4 73.2 73.2 71.9 72.5 80.5 80.3 80.5 80.3 80.5 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 80.5 80		13	143.8	143.8	143.7	143.7	143.7	143.7	142.9	1		105.4	105.4	105.3	105.1	105.0	105.0	105.0
15 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.7 72.6 68.1 4 73.2 77.3 77.7 74.6 74.7 77.9		14	47.8	47.8	47.9	47.9	47.8	47.8	41.7	2		83.0	83.0	79.1	83.0	81.0	80.9	81.0
16 72.7 71.8 72.7 72.7 72.6 68.1 4 73.2 71.9 72.5 80.5 80.3 80.5 17 48.4 48.		15	67.5	67.5	67.5	67.5	67.5	67.5	34.7	3		77.8	77.8	87.8	77.8	76.3	76.3	76.3
17 48.4 48.4 48.4 48.4 48.4 48.1 5 77.5 77.4 77.3 77.7 74.6		16	72.7	71.8	72.7	72.7	72.7	72.6	68.1	4		73.2	73.2	71.9	72.5	80.5	80.3	80.5
18 41.0 41.0 41.0 41.0 41.0 41.0 40.9 46.1 16.8 4 74.0		17	48.4	48.4	48.4	48.4	48.4	48.4	48.1	5		77.5	77.4	77.3	77.7	74.6	74.6	74.6
19 46.9 46.9 46.9 46.9 46.9 46.9 47.3 20 36.2 36.3 36.3 36.3 36.4 36.3 36.2 GC GC <td></td> <td>18</td> <td>41.0</td> <td>41.0</td> <td>41.0</td> <td>41.0</td> <td>41.0</td> <td>41.0</td> <td>40.2</td> <td>6</td> <td></td> <td>172.4</td> <td>172.5</td> <td>171.9</td> <td>172.4</td> <td>68.5</td> <td>68.4</td> <td>68.5</td>		18	41.0	41.0	41.0	41.0	41.0	41.0	40.2	6		172.4	172.5	171.9	172.4	68.5	68.4	68.5
20 36.2 36.3 36.3 36.4 36.3 36.2 Glc Glc ^a Glc ^a Glc ^a Glc ^d <td></td> <td>19</td> <td>46.9</td> <td>46.9</td> <td>46.9</td> <td>46.9</td> <td>46.9</td> <td>46.9</td> <td>47.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		19	46.9	46.9	46.9	46.9	46.9	46.9	47.3									
21 79.2 78.9 78.9 78.9 78.8 79.6 1 106.1 104.0 103.5 105.3 105.2 105.3 22 74.1 74.0 <		20	36.2	36.3	36.3	36.3	36.4	36.3	36.2			Glc	Glc ^a	Glc ^a	Glc ^a	\mathbf{Glc}^d	Glc^d	Glc^d
22 74.1 74.0 74.0 74.0 74.0 74.0 74.0 74.5 2 77.1 77.1 76.4 85.0 77.0 77.0 77.9 77.0 76.7		21	79.2	78.9	78.9	78.9	78.9	78.8	79.6	1		106.1	106.1	104.0	103.5	105.3	105.2	105.3
23 28.1 28.1 27.9 28.2 28.1 28.0 28.1 3 78.0 78.0 78.6 77.7 77.9		22	74.1	74.0	74.0	74.0	74.0	74.0	74.5	2		77.1	77.1	76.4	85.0	77.0	77.0	77.0
24 16.9 16.1 16.8 17.0 16.9 16.8 16.8 4 71.8 72.7 71.9 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0		23	28.1	28.1	27.9	28.2	28.1	28.0	28.1	3		78.0	78.0	78.6	77.7	77.9	77.9	77.9
25 15.8 15.9 15.8 15.9 15.8 15.9 15.7 5 78.2 78.2 77.8 77.7 78.1 78.5 75.2 76.8 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2		24	16.9	16.1	16.8	17.0	16.9	16.8	16.8	4		71.8	72.7	72.7	71.9	72.0	71.9	72.0
26 17.7 16.4 104.7 106.4 104.8 104.8 104.8		25	15.8	15.9	15.8	15.9	15.8	15.9	15.7	5		78.2	78.2	77.8	77.7	78.1	78.1	78.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		26	17.6	17.6	17.6	17.6	17.6	17.5	17.0	6		62.8	62.8	63.4	63.0	63.0	62.9	63.0
28 63.3 63.4 63.5 63.4 63.3 63.9 Glc ^b terminal Glc Glc ^e G		27	21.1	21.1	21.1	21.1	21.1	21.1	27.5									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		28	63.3	63.4	63.5	63.4	63.4	63.3	63.9					Glc^b	terminal Glc	Glc^{e}	Glc	GIc ^e
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		29	29.4	29.4	29.4	29.4	29.5	29.6	29.5	1				104.7	106.4	104.8	104.8	104.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	20.0	20.0	20.0	20.0	20.0	20.1	20.1	2				75.5	76.8	75.2	75.2	75.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										3				78.6	77.8	78.1	78.2	78.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ester moiety									4				71.7	71.4	71.8	71.7	71.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	acetyl at	1							170.9	5				78.6	79.3	78.5	78.5	78.5
acetyl at 1 170.8 170.9 170.9 170.9 170.8 171.1 Ara Ara Ara C-22 2 20.7 20.8 20.8 20.8 20.9 1 105.7 105.8 105.7 propanoyl 1 174.3 2 28.3 4 69.7 69.7 69.8 69.7 3 9.8 5 5 5 67.2 67.3 67.2	C-21	2							21.1	6				62.4	62.8	62.4	62.2	62.4
C-22 2 20.7 20.8 20.8 20.8 20.9 1 105.7 105.8 105.7 propanoyl 1 174.3 2 2 72.6 72.5 72.6 2 28.3 4 69.7 69.8 69.7 69.8 69.7 3 9.8 5 5 67.2 67.3 67.2	acetyl at	1	170.8	170.9	170.8	170.9	170.9	170.8	171.1							Ara	Ara	Ara
propanoyl 1 174.3 2 28.3 4 72.6 72.7 72.6 72.7 72.6 72.5 72.6 72.5 72.6 74.5 74.4 74.5 74.5 74.4 74.5 69.7 69.8 69.7 69.8 69.7 69.8 69.7 67.2 67.3 67.2 67.2 67.2 67.3 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2	C-22	2	20.7	20.8	20.8	20.8	20.8	20.8	20.9	1						105.7	105.8	105.7
propanoyl 1 174.3 3 74.5 74.4 74.5 2 28.3 4 69.7 69.8 69.7 3 9.8 5 67.2 67.3 67.2										2						72.6	72.5	72.6
2 28.3 4 69.7 69.8 69.7 3 9.8 5 67.2 67.3 67.2	propanoyl	1	174.3							3						74.5	74.4	74.5
3 9.8 5 67.2 67.3 67.2		2	28.3							4						69.7	69.8	69.7
		3	9.8							5						67.2	67.3	67.2

^a Glc at C-2 of GlcA. ^b Glc at C-3 of GlcA. ^c CGlc at C-3 of aglycon. ^d Glc at C-2 of Glc. ^e Glc at C-4 of Glc.

Fraction 14 (128 mg) was subjected to preparative HPLC [Capcell Pak Ph, 20 mm \times 25 cm, CH₃CN-H₂O-TFA (30:70:0.05), 6.5 mL/min, UV 205 nm] to give **2** ($t_{\rm R}$ 69.4 min, 48.2 mg).

Fraction 15 (13 mg) was separated by preparative HPLC [Capcell Pak Ph, 20 mm \times 25 cm, CH₃CN–H₂O–TFA (27.5: 72.5:0.05), 6.5 mL/min, UV 205 nm] to give **6** ($t_{\rm R}$ 79.3 min, 3.2 mg).

Hydrocotyloside I (1): 3.9 mg; amorphous powder; $[\alpha]_D^{23} - 1.1^{\circ}$ (*c* 0.46, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 965 [M + Na]⁺; HRFABMS *m*/*z* 965.4713 [M + Na]⁺ (calcd for C₄₇H₇₄O₁₉Na, 965.4722).

Hydrocotyloside II (2): 91.9 mg; amorphous powder; $[\alpha]_D^{23} - 1.5^\circ$ (*c* 0.91, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 979 [M + Na]⁺; HRFABMS *m*/*z* 979.4890 [M + Na]⁺ (calcd for C₄₈H₇₆O₁₉Na, 979.4879).

Hydrocotyloside III (3): 8.6 mg; amorphous powder; $[\alpha]_D^{23} - 0.8^\circ$ (*c* 0.86, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 1142 [M + Na]⁺; HRFABMS *m*/*z* 1141.5391 [M + Na]⁺ (calcd for C₅₄H₈₆O₂₄Na, 1141.5407).

Hydrocotyloside IV (4): 14.8 mg; amorphous powder; $[\alpha]_D^{23} - 1.1^\circ$ (*c* 0.63, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 1142 [M + Na]⁺; HRFABMS *m*/*z* 1141.5388 [M + Na]⁺ (calcd for C₅₄H₈₆O₂₄Na, 1141.5407).

Hydrocotyloside V (5): 34.9 mg; amorphous powder; $[\alpha]_D^{23} - 1.5^\circ$ (*c* 0.85, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 1260 [M + Na]⁺; HRFABMS *m*/*z* 1259.6033 [M + Na]⁺ (calcd for C₅₉H₉₆O₂₇Na, 1259.6037).

Hydrocotyloside VI (6): 3.2 mg; amorphous powder; $[\alpha]_D^{23} - 1.2^{\circ}$ (*c* 0.34, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 1274 [M + Na]⁺; HRFABMS *m*/*z* 1273.6184 [M + Na]⁺ (calcd for C₆₀H₉₈O₂₇Na, 1273.6193).

Hydrocotyloside VII (7): 55.3 mg; amorphous powder; $[\alpha]_{D}^{23} - 1.5^{\circ}$ (*c* 0.81, MeOH); ¹H and ¹³C NMR, see Tables 1 and 2; FABMS *m*/*z* 1216 [M + Na]⁺; HRFABMS *m*/*z* 1215.5748 [M + Na]⁺ (calcd for $C_{57}H_{92}O_{26}Na$, 1215.5775).

Udosaponin B {3-O-[β -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucuronopyranosyl]-28-O- β -D-glucopyranosylolean-12en-28-oic acid} (8): 28.0 mg; FABMS m/z 979 [M + Na]⁺.

Acid and Alkaline Hydrolysis of Saponins. Each saponin (1 mg) was dissolved in 1 M NaOH (200 μ L) and stirred for 3 h at room temperature. Then, the solution was acidified with 2 M HCl (300 μ L) and extracted with EtOAc twice. For ester analysis, the EtOAc layer was washed with H₂O, O-(4nitrobenzyl)-N,N-diisopropylisourea (1 mg) was added, and the mixture was heated at 80 °C for 1 h. The reaction mixture was concentrated, and the residue was subjected to HPLC analysis [column, Develosil PhA (Nomura Chemical), 4.6 mm \times 25 cm; solvent, CH₃CN-H₂O (45:55); flow rate, 1.0 mL/min; detection, UV 273 nm] for detection of esters. Acetic acid ($t_{\rm R}$, 9.4 min) was detected from 1-7, propanoic acid (t_R , 4.4 min) from **1**, 2-methylpropanoic acid ($t_{\rm R}$, 15.2 min) from **2**-**5**, and 2-methylbutanoic acid ($t_{\rm R}$, 20.1 min) from 6. The H₂O layer was heated at 100 °C for 1 h. The solution was diluted with H₂O and extracted twice with EtOAc. Then, AgCO₃ (3 mg) was added to the H₂O layer, and the mixture was stirred and centrifuged. The supernatant was taken and concentrated. The residue was dissolved in 30 μ L of pyridine with D-cysteine methyl ester (3 mg) and stirred for 1.5 h at 60 °C. After derivatization, a mixture of hexamethyldisilazane and trimethylsilyl chloride (9:1, 20 μ L) was added to the solution and stirred for 30 min at 60 °C. The reaction solution was centrifuged, then the supernatant was analyzed by GC (column, Supelco SPB-1, 0.25 mm \times 27 m; column temperature, 215 °C; carrier gas, N₂), and D-glucuronic acid ($t_{\rm R}$, 15.3 min) was detected from 1–4, D-glucose ($t_{\rm R}$, 20.9 min) from 1–7, and L-arabinose ($t_{\rm R}$, 11.8 min) from 5–7, by comparison with the retention times of authentic samples.¹¹

Supporting Information Available: Tables of HMBC and ROE correlations of compounds 1–7. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Barrera, A. F; Haïdour, A.; Sedqui, A.; Mansour, A. I.; Rodíguez-García, I.; López, A.; Muñoz Dorado, M. *Phytochemistry* **2000**, *54*, 741–745, and references therein.
 Matsuda, H.; Morikawa, T.; Ueda, H.; Yoshikawa, M. *Chem. Pharm.*
- Bull. 2001, 49, 1368–1371, and references therein.
- Arda, N.; Gören, N.; Kuru, A.; Pengsuparp, T.; Pezzuto, M. J.; Sheng-(3) XIang, Q.; Cordell, A. G. J. Nat. Prod. 1997, 60, 1170-1173, and references therein.

Matsushita et al.

- 1998, 64, 83-85, and references therein. Greca, M. D.; Fiorentino, A.; Monaco, P.; Previtera, L. Phytochemistry (5)
- **1994**, *36*, 1479–1483. (6) Corsaro, M. M.; Greca, M. D.; Fiorentino, A.; Monaco, P.; Previtera,
- Corsaro, M. M., Oreca, M. D., FIOTENIIIO, A.; MORACO, P.; Previtera, L. Nat. Prod. Lett. 1995, 6, 95–102.
 Mitsuhashi, H. Illustrated Medicinal Plants of The World in Colour; Hokuryukan Co., Ltd. Press: Tokyo, 1988; p 362.
 Greca, M. D.; Fiorentino A.; Monaco, P.; Previtera, L. Phytochemistry 1993, 35, 201–204.
- (9) Lavaud, C.; Massiot, G; Oliver, M. L. L.; Viari, A.; Vigny, P.; Delaude,
- C. Phytochemistry 1992, 31, 3177-3181. (10) Kawai, H.; Nishida, M.; Tashiro, Y; Kuroyanagi, M.; Ueno, A.; Satake,
- M. Chem. Pharm. Bull. 1989, 37, 2318-2321
- (11) Hara, S.; Okabe, H.; Mihashi, K. Chem. Pharm. Bull. 1986, 34, 1843–1844.

NP030356Z